Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 245: 120646, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37748343

RESUMO

In this study, an anaerobic moving bed biofilm reactor (AnMBBR) was developed for simultaneous methanogenesis and denitrification (SMD) to treat high-strength landfill leachate for the first time. A novel strategy using biosurfactant to ameliorate the inhibition of landfill leachate on the SMD performance was proposed and the underlying mechanisms were explored comprehensively. With the help of rhamnolipids, the chemical oxygen demand (COD) removal efficiency of landfill leachate was improved from 86.0% ± 2.9% to 97.5% ± 1.6%, while methane yields increased from 50.1 mL/g-COD to 69.6 mL/g-COD, and the removal efficiency of NO3--N was also slightly increased from 92.5% ± 1.9% to 95.6% ± 1.0%. The addition of rhamnolipids increased the number of live cells and enhanced the secretion of extracellular polymeric substances (EPS) and key enzyme activity, indicating that the inhibitory effect was significantly ameliorated. Methanogenic and denitrifying bacteria were enhanced by 1.6 and 1.1 times, respectively. Analysis of the microbial metabolic pathways demonstrated that landfill leachate inhibited the expression of genes involved in methanogenesis and denitrification, and that their relative abundance could be upregulated with the assistance of rhamnolipids addition. Moreover, extended Deraguin - Landau - Verwery - Oxerbeek (XDLVO) theory analysis indicated that rhamnolipids reduced the repulsive interaction between biofilms and pollutants with a 57.0% decrease in the energy barrier, and thus accelerated the adsorption and uptake of pollutants onto biofilm biomass. This finding provides a low-carbon biological treatment protocol for landfill leachate and a reliable and effective strategy for its sustainable application.

2.
Sci Total Environ ; 903: 166980, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37699484

RESUMO

Different mass ratio iron (Fe)-loaded biochars (FeBCs) were prepared from food waste and used in the three-dimensional biofilm-electrode systems (3D-BES) as particular electrodes for landfill leachate treatment. Compared to the unmodified biochar (BC), specific surface area of Fe-loaded biochars (FeBC-3 with a Fe: biochar of 0.2:1) increased from 63.01 m2/g to 184.14 m2/g, and pore capacity increased from 0.038 cm3/g to 0.111 cm3/g. FeBCs provided more oxygen-containing functional groups and exhibited excellent redox properties. Installed with FeBC-3 as particular electrode, both NH4+-N and chemical oxygen demand COD removals in 3D-BESs were well fitted with the pseudo-first-order model, with the maximum removal efficiencies of 98.6 % and 95.5 %, respectively. The batch adsorption kinetics experiments confirmed that the maximum NH4+-N (7.5 mg/g) and COD (21.8 mg/g) adsorption capacities were associated closely with the FeBC-3 biochar. In contrast to the 3D-BES with the unmodified biochar, Fe-loaded biochars significantly increased the abundance of microorganisms being capable of removing organics and ammonia. Meanwhile, the increased content of dehydrogenase (DHA) and electron transport system activity (ETSA) evidenced that FeBCs could enhance microbial internal activities and regulate electron transfer process among functional microorganisms. Consequently, it is concluded that Fe-loaded biochar to 3D-BES is effective in enhancing pollutant removals in landfill leachate and provided a reliable and effective strategy for refractory wastewater treatment.

3.
Bioresour Technol ; 379: 129003, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37019412

RESUMO

An integrated process of electrochemical pre-treatment with carrier-based membrane bioreactor (MBR) was constructed for fresh leachate from waste transfer stations with high organic and NH4+-N content. Results showed that within a hydraulic retention time 40 h, the removal efficiencies of chemical oxygen demand (COD), NH4+-N, suspended solids (SS) and total phosphorus (TP) were over 98.5%, 91.2%, 98.3% and 98.4%, respectively, with the organic removal rate of 18.7 kg/m3. The effluent met the Grade A Standard of China (GB/T31962-2015). Pre-treatment contributed about 70 % of the degraded refractory organics and almost all the SS, with the transformation of the humic-like acid to readily biodegradable organics. Biotreatment further removed over 50% of nitrogen pollutants through simultaneous nitrification and denitrification (SND) and consumed about 30% of organics. Meanwhile, the addition of carriers in the oxic MBR enhanced the attached biomass and denitrification enzyme activity, alleviating membrane fouling.


Assuntos
Reatores Biológicos , Nitrificação , Nitrogênio/química , Fósforo , Análise da Demanda Biológica de Oxigênio
4.
J Environ Manage ; 329: 117088, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584508

RESUMO

The municipal solid waste (MSW) with high water content can be pre-treated by the mechanical dewatering technology to significantly decrease the leachate generation in sequential landfill treatment or to improve the efficiency for solid waste incineration, which has attracted great concerns recently. However, the generated mechanical dewatering wastewater (MDW) containing high organics and nitrogenous content has been one of the big challenges for the sustainable treatment of MSW. In this study, a pilot-scale integrated system composed of physiochemical pretreatment, anaerobic sequencing batch reactor (ASBR), partial nitrification SBR (PN-SBR), denitrification SBR (DN-SBR), and UV/O3 advanced oxidation process, with a capacity of 1.0 m3/d to treat MDW containing over 34000 mg-chemical oxygen demand (COD)/L organics pollutant and 850 mg/L NH4+-N, was successfully developed. By explorations on the start-up of this integrated system and the process conditions optimization, after a long-term system operation, the findings demonstrated that this integrated system could reach the removal efficiency in the COD, NH4+-N and total nitrogen (TN) in the MDW of 99.7%, 98.2% and 96.9%, respectively. Partial nitrification and denitrification were successfully obtained for the TN removal with the nitrite accumulation rate of over 80%. The treatment condition parameters were optimized to be 800 mg/L polyaluminum chloride (PAC) and 2 mg/L polyacrylamide (PAM) under a pH of 9 for pretreatment, 36 h hydraulic retention time (HRT) for ASBR, 24 h for PN-SBR, and 2 h for UV/O3 unit. The organic sources in the MDW were also found to be feasible for the DN-SBR. Consequently, the resulting final effluent was stably in compliance with the discharge standard with high stability and reliability.


Assuntos
Nitrificação , Poluentes Químicos da Água , Águas Residuárias , Desnitrificação , Reprodutibilidade dos Testes , Resíduos Sólidos , Esgotos/química , Reatores Biológicos , Poluentes Químicos da Água/química , Nitrogênio/química , Oxirredução
5.
Bioresour Technol ; 341: 125866, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34523551

RESUMO

Biochar prepared from pineapple peel was facially combined with polyurethane sponges for the first time to form homogeneous biocompatible biocarriers, which can enhance denitrification performance in an anoxic MBBR. The experiments showed that a higher NO3--N removal efficiency (96.24 ± 1.3%) and kinetic constant (0.26 h-1) were obtained in the MBBR employing these new biocarriers (B-MBBR), compared with a control MBBR with polyurethane sponges (C-MBBR). The attached and suspended biomass of the B-MBBR was increased by 47% and 26%, respectively. Biochar significantly enhanced the abundance of functional bacteria in terms of promoting biofilm (i.e., Leptonema), denitrifying bacteria (i.e., Thauera, Enterobacter and Pseudomonas) and electroactive bacteria (i.e., Geobacter) in the B-MBBR. Meanwhile, based on the content of coenzyme I (NADH) and denitrifying enzymes, biochar would also enhance electron transport activity for denitrification. Consequently, these facial prepared biocarriers are effective to enhance denitrification performance in MBBR with application significance.


Assuntos
Biofilmes , Desnitrificação , Reatores Biológicos , Carvão Vegetal , Nitrogênio/análise , Eliminação de Resíduos Líquidos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...